On Island Constraints—A Phrase Structure
Grammar Perspective

HARADA Yasunari
Waseda University

In this article we will consider how the so-called “island constraints” are to be
incorporated into a phrase structure grammar description of (a fragment of) English
Grammar.

“Island Constraints” have long been the central issue of generative transforma-
tional studies of English syntax. Although researchers working within unification-
based grammars do not necessarily share this interest, we have to consider what a
possible ‘solution’ to this problem within a phrase structure grammar approach to
syntax might look like and how it might affect our understanding of the ‘adequacy’
of our research objective. Thus we will define a very small fragment of English,
outline how unbounded dependencies are to be dealt with in that fragment and then
go on to discuss how ‘island constraints’ are to be guaranteed.

0 Constraint-Unification-Based Phrase Structure
Grammar

In a constraint-unification-based phrase structure grammar, syntactic regulari-
ties are to be stated in terms of local phrase structures and constraints obtaining
among feature specifications involved in a given local phrase structure. Here a
description of a fragment of a natural language such as English or Japanese is de-
termined if and only if we (1) define what objects constitute grammatical categories
in that language, (2) state what phrase structure rules are to be utilized in that
language and (3) specify what lexical items belong to what syntactic category or
categories. As with other recent grammatical theories, we conceive of grammat-
ical categories as bundles of feature specifications rather than non-decomposable
monadic objects. Also, we permit partial specifications of these categories. Thus,
phrase structure rules in our fragment will refer to grammatical categories with very
few feature specifications, which enables us to efficiently state syntactic regularities.

When embedded into an environment where constraint-unification is executed,
our grammar will sanction only the grammatical configurations of (the fragment of)
English defined. Partially specified categories that are mentioned in phrase structure
rules are ‘unified’ or matched with more richly specified categories that are assigned
to lexical items. In this way, our grammar determines (1) whether a given string of
words constitute a grammatical sentence (or some other category) of (our fragment
of) English, (2) what are possible strings in the language defined, and (3) what parse
trees are to be assigned to these strings.

0.1 Categories and features

As an example of how our description of English might look like, we will give you

some typ

sible ranges of their values. This is of course a very limi

ical features together with their intuitive or heuristic ‘meanings’ and pos-

ted subset of features that

are needed to adequately describe the grammar of English.

(0.1.1) pos part of speech {n, v, p, a, det}
pn person and number {nil, 1s, 2s, 3s, 1p, 2p, 3p}
case case {nil, nom, poss, acc}
form verb form {nil, base, fin, presp, pastp}
preposition {of, at, on, in, for, to}
spec specifier list of categories
subcat complement list of categories
comp complementizer list of variables
sem semantics some expression
gap syntactic gap list of categories
bind variable list of variables

In what follows, categories are designated by a. left square bracket (“[”) followed
by an indefinite number of feature specifications separated by commas (%,”) followed
by a right square bracket (“]”). A feature specification is maximally a feature name
followed by its value. However, when the value uniquely determines the name, the
name can be omitted. Also, when the value is nil or a null-list (< >) the entire
feature specification can be omitted. Finally a category of the form [pos P, ...,
sem S§] is sometimes designated as P[...]:S. Some examples follow, together with
symbols often used in traditional generative literature. Note that traditional symbols
do not necessarily bear as much information as category designations defined here.

[pos n, subcat < >, spec < >, sem m’]
o[Jim’

(0.1.2) NP

PP [pos p, subcat < >, spec < >, form for]
plfor]
VP [pos v, spec <[pos n, subcat nil, sem X]>, form fin,

sem love’(X,j’)]
v[fin, spec <n[:X>]:love’(X,j’)
P [pos p, subcat <[pos n, subcat < >, case acc, sem j’|>, form on]
p[subcat <n[acc]:j’>, on]
V [pos v, subcat <[pos n, subcat < >]>,
spec<[pos n, subcat < >, pn 3s]>]
v[subcat <n[]>, spec<n[3s]>]

0.2 Phrase Structure Rules and Feature Inheritances

Partial specification of grammatical categories enables us to efficiently encapsulate
a great part of English syntax into the following two phrase structure rules.

(0.2.1) a. specification

Mr — Sp Hd
where spec @ Hd = <Sp|spec @ Mr>,
subcat @ Mr = subcat @ Hd = nil,
sem @ Mr = sem @ Hd,
head @ Mr = head @ Hd

b. complementation

Mr — Hd Ct
where subcat @ Hd = <Ct|subcat @ Mr>,
spec @ Mr = spec @ Hd,
sem @ Mr = sem @ Hd,
head @ Mr = head @ Hd

Typically these two phrase structure rules sanction the following local phrase
structures, respectively. Note that in English, the length of the value of spec cannot
be more than 1, but the same does not hold for the length of the value of subcat.
However, since an adequate exposition of how double object constructions and con-
trol phenomena are to be handled in the framework we have in mind here would
take us too far afield, we will restrict our attention to cases where the length of the
value of subcat is less than 2.

(0.2.2) a. P[spec < >, ...]:S
X P[spec <X>,...]:S
b. P[subcat < >, ...]:S

P[subcat <X>,...]:S X

The constraints or conditions that follow “where” (0.2.1.a,b) are the clauses in
which syntactic regularities are stated. These conditions are called feature inher-
itances. Here an expression of the form “Featurename @ Category-designator”
refers to the value of the feature designated by Feature.name with respect to the
grammatical category referred to by Category-designator. The symbol “=" repre-
sents unification. However, unification here employed disregards the values of bind.
The expression “head @ C1 = head @ C2” is a short hand way of repeating expres-
sions of the form “F @ C1 = F @ C2” with F ranging over head features, where
head features = {pos, pn, case, form}. Here and in what follows, constants are des-
ignated by names beginning with a lowercase letter and variables and meta-variables
are designated by names beginning with an uppercase letter.

Let us take a very simple sentence such as “John loves Mary” and see how
these phrase structure rules are involved in admitting that sentences like this are
grammatical in English.

First of all we have to remember that in a phrase structure grammar account
of English syntax, all lexical items or words are supposed to be given rich syntactic
information in the lexicon, where syntactic and semantic information concerning
each and every word is stored. For instance, a transitive verb “love” will be specified
in the lexicon as shown in (0.2.3).

(0.2.3) loves k= v[fin, spec <n[nom, 3s):X>, subcat <n[acc]:Y>]:love’(X,Y)

An expression of the form “Spelling |= Category” asserts that a lexical entry
whose representation is given as Spelling is assigned feature specifications designated
by Category.

Our two phrase structure rules assigns the following parse tree to the string
“John loves Mary”.

(0.2.4) John loves Mary.

v[fin]:love’(j’, m’)

n[nom, 3s):j’ v[fin, spec <n[nom, 3s]:X>]:love’(X, m’)
John v[fin, spec <n[nom, 3s]:X>, n[acc]:m’

subcat <nfacc]:Y>]:love’(X,Y)

loves Mary

Let’s take a look at the local structure in (0.2.5). The phrase structure rule given
in (0.2.1.b), or complementation, sanctions this local structure.

(0.2.5) v[fin, spec <n[nom, 3s):X>]:love’(X, m’)

v[fin, spec <n[nom, 3s]:X>, n[acc):m’
subcat <n[acc]:Y>]:love’(X,Y)

If we match the three grammatical categories in (0.2.5) against those.in (0.2.1.b),
more specifically, v[fin, spec <n[nom, 3s]:X>]:love’(X, m’) against Mr, v[fin, spec
<n[nom, 3s):X>, subcat <n[acc]:Y>]:love’(X,Y) against Hd, and nfacc]:m’ against
Ct, we see that all the conditions that follow “where” are satisfied. Therefore, the
three categories in (0.2.5) are said to “unify” with the three categories in (0.2.1.b)
and complementation is said to “sanction” this local phrase structure. Incidentally,
variable Y in the semantic representation of the transitive verb “love” is bound to or
unified with the constant m’, which is the semantic representation associated with
the proper noun “Mary”, as a side-effect of this unification.

Likewise, the ‘upper part’ of the parse tree in (0.2.4), namely the local structure
in (0.2.6) is sanctioned by specification in (0.2.1.a).

(0.2.6) v[fin]:love’(j’, m?)

n[nom, 3s3j’ v[fin, spec <n[nom, 3s]:X>]:love’(X, m’)

Here, if we match v[fin]:love’(j’, m’) against Mr, n[nom, 3s]:j’ against Sp, and
v[fin, spec <n[nom, 3s]:X>]:love’(X, m’) against Hd, all constraints are satisfied.
As above, variable X in the semantic representation of the verb phrase is bound to
J’, which is the semantic representation of the subject proper noun. The reason a
prepositional phrase cannot be the subject of a transitive verb like “loves” is that
its value for pos would be p, thus preventing it from unifying with Sp in the local
structure involved. Also, a plural noun phrase cannot be the subject here, because
the value of pn with respect to Sp is specified as 3s, rather than 3p.

We have reasons to believe that except for constructions that involve dislocation
of elements, only four phrase structure rules, namely complementation, specification,
adjunction and coordination are responsible for almost all English sentence construc-
tions. However, we have very little, if any, to say about adjunction or coordination
in this article.

Strictly speaking, our constraint-unification executive would not produce parse-
trees as shown in (0.2.4) but rather something like (0.2.7).

(0.2.7) John loves Mary.

v[fin]:love’(j’, m?)
n[nom, 3s]:j’ v[fin, spec <n[nom, 3s]:j’>]:love’(j’, m’)
John v[fin, spec <n[nom, 3s]:j’>, nfacc]:m’

subcat <n[acc]:m’>]:love’(j’, m’)

loves Mary

That is, once unification binds a variable to a constant, all relevant occurrences
of the same variable is bound to that constant throughout a given representation.
However, if we give parse trees like (0.2.7), the binding process is quite obscured to
readers unfamiliar with our approach presupposed here. Therefore, we will talk as if
parsing is processed bottom-up, and give parse trees the way (0.2.4) is given, rather
than the way (0.2.7) is given.

For brevity, we will omit reference to features such as pn or case in what follows.

1 TUnbounded Dependencies in Phrase Structure
Grammar

Unbounded dependencies are guaranteed through chains of local constraints in
the phrase structure analysis of English we are here considering. The feature gap
plays a central role in this, binding syntactically and semantically the dislocated
grammatical element and the syntactic gap it binds in an unbounded dependency
construction.

Typical examples of unbounded dependencies are sentences such as those in
(1.0.1). Here, however, in order not to complicate our grammar to something overly

loaded with new lexical items or phrase structure rules that are responsible for
Subject Auxiliary Inversion constructions, let us take sentences in (1.0.2). Sentences
in (b) and (d) are added because in our grammar, subjects and objects are treated
quite differently.

(1.0.2) a. what did you see _

b. what do you think that John saw _

(1.0.3) a. [I wonder] who John loves
b. [I wonder] who loves John
¢. [I wonder] who Mary thinks John loves
d. [I wonder] who Mary thinks loves John

Here, we are presupposing a lexical entry of the following form.
(1.0.4) thinks |= v[fin, spec<n[]:X>, subcat <v[fin]:Y>]:think’(X,Y)

For the (embedded) sentences in (1.0.2) our grammar will assign the following
parse trees. Explanations of what these symbols in the diagrams are supposed to
mean will follow shortly.

(1.0.4) [I wonder] who John loves
wonder’(speaker,<Y > love’(j’,Y))

v[fin, comp <Y>]:love’(j’,Y)

n[bind <Y>]:Y v[fin, gap <n[]:Y>]:love’(j’,Y)

who n[J;j° vl[fin, spec <n[:X>,
gap <[]:Y>]:love’(X,Y)

John loves

(1.0.5) I wonder] who loves John
wonder’(speaker,<X>, love’(X, j))

v[fin, comp <X>]:love’(X,j’)

n[bind <X>]:X v[fin, spec <n[]:X>]:dlove’(X,j’)

PN

who v[fin, spec <n[]:X>, o[]:j°
subcat <n[:Y>]:love’(X,Y)

loves John

(1.0.6) [I wonder] who Mary thinks John loves
wonder’(speaker,<Z>, think’(m’, love’(j’,Z)))

v[fin, comp <Z>]:think’(m’,love’(j’,Z))

n[bind <Z>]:Z v[fin, gap <n[]:Z>]:think’(m’, love’(j’,Z))

who n[:m’ v[fin, spec <n[]:X>, gap <n[]:Z>]
:think’(X, love’(j’,Z))

Mary vl[fin, spec <n[]:X>, v[fin, gap <n[]:Z>]
subcat <v[fin]:P>] :love’(j’,Z)
think’(X,P)
thinks n[]:j’ v[fin, spec <n[]:Y>,

gap <n[J:Z]>]:love’(Y,Z)

John loves

(1.0.7) [I wonder] who Mary thinks loves John
wonder’(speaker,<Y>, think’(m’, love’(Y, j’)))

v[fin, comp<Y>]:think’(m’,love’(Y,j’))
n[bind <Y>]:Y v[fin, gap <n[]:Y>]:think’(m’,love’(Y,j’))

who o[J:m’ v[fin, spec <n[]:X>, gap <n[]:Y>]
l :think’(X, love’(Y,j’))

/\

Mary v[fin, spec <n[]:X>, * v[fin,
subcat <v[fin, spec <n[:Y>]:P>, spec <n[]:Y>]
gap <n[]:Y>]:think’(X,P) love’(Y,j?)
thinks v[fin, spec <n[J:Y>, [):j’

subcat <n[J:Z]>]:love’(Y,Z) ‘

loves John

1.1 Binding Features

The feature gap takes a list consisting of grammatical categories as its value and
propagates information concerning the existence of syntactic gaps through a parse
tree. This feature is equivalent, for the most part, to the feature called slash in the
previous GPSG and/or HPSG literature. Note incidentally, that binding between
semantic representations of dislocated elements and variables that appear in the
semantic representations of gaps they bind is also achieved as ‘side-effects’ of unifi-
cation chains. The feature bind takes a list of variables as its value and propagates
information concerning semantic variables of relative and interrogative construc-
tions. This feature is somewhat similar to the feature wh in previous GPSG studies.
These two are called binding features.

(1.1.1) binding features = {gap, bind}

Binding feature inheritance states local constraints obtaining among values of
binding features with respect to grammatical categories involved in a given local
phrase structure. In general, the following condition holds in all local structures
where binding features are not bound.

(1.1.2) binding feature inheritance
Mr — C1 C2

where F@Mr=F@ Cl1 + F @ C2
if F € binding features

Here “4” designates a list operation not unlike concatenation. For instance, < >
3 <. >+ <>, <X>=<X>4<>,<X>=< >+ <X> and so on. However, non-
distinct elements are merged rather than repeated. Thus, <X> = <X> + <X>,

<X|Y> = <X> + <X|Y> and so on. Typically (1.1.2) sanctions local structures
of the following forms, among others.

(1.1.3) a. [gap <X>]

TN

[gap <X>] [gap < >]

b. [gap <X>]

[sap < >] | [gap <X>]

c. [bind <X>]
[bmd/d(}fbind <>]
d. [bind <X>]

e e

[bind < >] [bind <X>]

Earlier we mentioned that our unification disregards the values of bind. In fact,
we have reasons to believe that something like (1.1.4) really captures how bind and
gap are inherited with respect to complentation and specification. Consideration
of how constructions involving double wh questions and parasitic gaps along with
violin-sonata sentences are to be admitted in our framework would lead to the these
formulations. However, an adequate explanation of these would justify another
article. Thus, we assume simpler inheritance conditions as given in (1.1.2) in the
discussions that follow.

(1.1.4) an alternative formulations of phrase structure rules
(Here “@” designates concatenation.)

a. complementation
H[subcat L1, gap L26L3, bind L4§L5]

/\

H[subcat <C[gap L6]|L1>, gap L2, bind L4] C|gap L6®L3, bind L5]
b. specification
H[gap L1®L2, bind L4®L5, comp L6®L7]

Clgap L1, bind L4®L6] H[spec <C>, gap L1®L2, bind L5@L7)

1.2 Lexical Rules

Lexical rules assert regularities that hold among lexical entries. To take a trivial
example, given an infinitival form of a verb, we can ‘predict’ rather safely that a
third person singular form of that verb exists, whose spelling is obtained by adding
an “s” at the end of the spelling of the infinitival form with some orthographical
modifications. Thus, something like (1.2.1) will be part of the lexicon (and grammar)
of English.

(1.2.1) third person singular lexical rule
Vs | [fin, spec <n[nom, 3s]>] if V = [inf, spec <n[]>]
where Vs tpsf V

Here, “if” is a relation obtaining among two lexical entries. An expression of
the form given in (1.2.1) states that a lexical entry that appear on the left-hand
side of “if” exists in the lexicon if a lexical entry that appear on the right-hand
side of “f” exists in it. All feature specifications including spellings and semantic
representations that are not explicitly stated in the rule are the same between the
two lexical entries. In the example given in (1.2.1) “tpsf” is to be construed as a
binary relation that holds between an infinitival form representation of a verb and
its third person singular form representation.

Some lexical rules play an important role in our analysis of unbounded depen-
dency constructions. For instance, (1.2.2) is indispensable.

(1.2.2) gap introduction lexical rule
v[subcat < >, gap <n[]>]if v[subcat <n[|>, gap < >]

In the fragment defined in the previous section, “loves” is specified as a transitive
verb, occurring in environments immediately preceding a noun phrase. However, as
classical arguments show, they appear without apparent object noun phrases in an
unbounded dependency constructions. Thus, only (b) is ungrammatical in (1.2.3).
(1.2.3) a. John loves Mary.

b. *John loves.

¢. Mary, John loves.

d. Jane, Mary thinks John loves.

Given a lexical rule of the form in (1.2.2) and a lexical entry of the form in (0.2.3)
we obtain the following lexical entry, which is involved in the sentences (1.2.3.c,d).

(0.2.3) loves |= vfin, spec <n[nom, 3s]:X>, subcat <n[acc]:¥>]:love’(X,Y)
(1.2.4) loves |= v[fin, spec <n[nom, 3s]:X>, gap <n[]:Y>]:love’(X,Y)

Note that the lexical rule in (1.2.2) explicitly refers to subcat. Thus, (1.2.5) is
not part of English lexicon.

(1.2.5) (this is not part of English lexicon)
loves |= v[fin, gap <n[]:X>, subcat <n[]:Y>]:love’(X,Y)

Then what about sentences like (1.0.2.d).
(1.0.2.d) [I wonder] who Mary thinks loves John

Here, following the analysis of Gazdar (1981) we assume the following lexical
rule.

(1.2.6) subject extraction lexical rule
v[subcat <v[fin, spec <n[]:X>]>, gap <n[]:X>]
if v[subcat <v[fin, spec < >, gap < >]>]

Since we have a lexical entry of the form in (1.0.3), a lexical entry of the form
in (1.2.7) is obtained if we assume that “thinks” is a legitimate input to this rule.

(1.0.3) thinks |= v[fin, spec<n[]:X>, subcat <v[fin]:Y>]:think’(X,Y)

(1.2.7) thinks |= v[fin, spec<n[]:X>, subcat <v[fin, spec <n[]:Y>]:Z>,
gap <n[]:Y>]:think’(X,Z)

1.3 Binding

We first saw how information regarding the existence of gaps are to be propagated,
and then introduced lexical rules that introduce gaps. (The bottom- up expressions
are intended only as a means of facilitating the understanding of the readers.) What
remains to be discussed is how binding is achieved.

We have to take into consideration two kinds of binding. Topicalization is syn-
tactic binding of syntactic gaps, whereas complementization is binding of semantic
variables.

1.3.1 Syntactic Binding

Information concerning the existence of syntactic gaps has to be somehow resolved or
bound in some local phrase structure. The following phrase structure rule sanctions
local structures where this binding takes place.

(1.3.1.1) topicalization
Mr — Bdr Hd
where gap @ Hd = <Bdr|gap @ Mr>,
subcat @ Mr = subcat @ Hd = nil,
spec @ Mr = spec @ Hd = nil,
sem @ Mr = sem @ Hd,
head @ Mr = head @ Hd

In this local structure, binding occurs with respect to gap @ Bee. Therefore,
binding feature inheritance does not hold in this local structure with respect to gap
@ Bee and gap @ Mr. The relation among them are explicitly stated as a constraint.

Graphically, the following structure will show what topicalization is all about.

(1.3.1.2) Plgap < >,...]:S

X Plgap <X>,...]:S

This will sanction sentences like (1.3.1.3).

(1.3.1.3) Mary, John loves

v[J:love’(j’, m’)

o[:m’ v[gap <n[|:X>]
Mary n[];j° v[gap <n[:X>, spec <n[]:Y>]
John loves

1.3.2 Semantic Binding

Besides syntactic binding of gaps, we have to take into consideration semantic bind-
ing of variables that occur in a relative or interrogative constructions. We call this
complementization.

(1.3.2.1) complementization
Mr — C1 C2
where comp @ Mr = bind @ C1,
gap @ Mr = nil

Here, since binding occurs with respect to bind @ C1, binding feature inheritance
does not hold between bind @ C1 and bind @ Mr.
Graphically, (1.3.2.2) will tell you what this is all about.

(1.3.2.2) [comp X, gap < >, bind < >, ...]
[bind X, ...] [gap < >, bind < >,...]

Although we give this as a phrase structure rule, or constraints obtaining among
feature specifications involved in a local phrase structure, it can never ‘stand alone’.
Complementization concurs with topicalization and specification. Or, we can think
of complementization as unifying with other phrase structure rules.

(1.3.2.3) complementization unified with topicalization
Mr — Bdr Hd
where gap @ Mr = nil,

gap @ Hd = <Bdr>,
comp @ Mr = bind @ Bdr,
sem @ Mr = sem @ Hd,
head @ Mr = head @ Hd,
subcat @ Mr = subcat @ Hd = nil,
spec @ Mr = spec @ Hd = nil

(1.3.2.4) [I wonder] who John loves

v[fin, comp<Y>]:lov’(j’,Y)

n[bind <Y>]:Y v[fin, gap <n[]:Y>]:lov’(j’,Y)

who n[J:j? v[fin, spec <n[]:X>,
gap <[]:Y>]:lov’(X,Y)

John loves

(1.3.2.5) complementization unified with specification
Mr — Sp Hd
where spec @ Hd = <Sp|spec @ Mr>,
comp @ Mr = bind @ Hd,
gap @ Mr = gap @ Hd = nil,
sem @ Mr = sem @ Hd,
head @ Mr = head @ Hd,
subcat @ Mr = subcat @ Hd = nil

(1.3.2.6) [I wonder] who loves John

v[fin, comp <X>]:love’(X,j’)

n[bind <X>]:X v[fin, spec <n[]:X>]:love’(X,j’)

who v[fin, spec <n[]:X>, o[J:j°
subcat <n[[:Y>]:love’(X,Y)

loves John

2 Island Constraints

In this section we will consider how the so-called “island constraints” phenomena
are to be guaranteed in a phrase structure grammar description of English.

2.1 Examples

What follows are some typical ungrammatical sentences exemplifying island con-
straint violations.

(2.1.1) complex NP constraint
a. *[I wonder] which book John met a child who read _
b. *[I wonder] who John believes the claim that Mary loved _
wh-island
c. *which book did you wonder who bought _
subject condition »
d. *who did a story about _ surprise you
The ungrammatical examples (2.1.1.a) and (2.1.1.c) both violate the condition
that gap @ Mr = nil in local structures where complementization is to take place.
We will discuss this point shortly.
It is difficult to account for the ungrammaticality of (2.1.1.b) from our point

of view, because with respect to local structures involved, it is quite similar to the
sentence in (2.1.2), which is grammatical.

(2.1.2) [I wonder] who John believes that Mary loves _

This disparity could be explained from a cognitive point of view. See Hasida’s
article in this volume for detail.

Our simpler grammar with binding feature inheritance as stated in (1.1.2) would
admit those strings as given in (2.1.1.d), although sentences like (2.1.3.2) would be
disallowed simply because our gap inheritance lexical rule specifically refers to subcat
rather than spec in the input category. However, if we assume phrase structure
rules as given in (1.1.4), sentences like (2.1.1.d) are disallowed while sentences with
parasitic gaps within subjects could be allowed. ‘

(2.1.3) a. *Who did John think that loves Mary?
b. Kim wondered which authors reviewers of always detested.
[GKPS: p.163]

(2.1.4) Kim wondered which authors reviewers of _ a.lWa.ys detested _.

v[fin, gap<n[]:X>]

n[gap <n[:X>] v[fin, spec<n[gap <n[:X>]:Y>,
gap <n[:X>]

n[subcat <p[]:Z>] p[gap <n[]:X>]

reviewers of always detested

A reasonable explanation of how this is achieved will take us too far afield, so let’s
suffice it to say that in the ‘top’ local phrase structure in (2.1.4) where specification
takes place, the relations in (2.1.5.a) hold among values for gap with respect to the

categories involved, which satisfy conditions stipulated in (1.1.4.b), namely those
conditions given in (2.1.5.b).

(2.1.5) a. gap @ Sp = gap @ Mr = gap @ Hd = <n[:X>
b. gap @ Sp = L1, gap @ Mr = gap @ Hd = L1gL2

2.2 Constraints on Complementization

Thus we have to show how examples (2.1.1.a) and (2.1.1.c) are to be disallowed. For
brevity of exposition, however, we will consider (2.2.1.a) and (2.2.1.b) instead.

(2:2.1) a. *[I wonder] which boy John met a girl who loved
b. *[John asked me] which boy Mary wondered who loved

The following treatment regarding syntax and semantics of relative constructions
are quite informal, inadequate, and inaccurate. However, since our concern here is to
show how island constraints are to be effected within a phrase structure account of
English, any attempt to rectify this defect is bound to grow into something grossly
out of proportion. Thus, let’s simply assume that relative clauses are sanctioned
through the following phrase structure rule. Here, all semantic representations are
nothing more than notational junks, but if you would try to take the expressions of
the form “gq(...)” as generalized quantifiers, you will see what I have in mind here.

(2.2.2) adjunction 1
n[J:gq(Qnt,X,P1AP2) — n[]:gq(Qnt,X,P1) v[comp <X>|:P2

This phrase structure rule is responsible for the following parse trees, among
others. .

(2.2.3) a girl who loved John
ga(a’X, girl’(X) A love’(X, j’))

n[J:gq(a’,X, girl’(X) A love’(X, j%))

o[]:gq(a’,X, girl’(X)) v[comp <X>]:love’(X,j’)
det[] n[spec <det[:Qnt>] n[bind <X>] vlspec <n[:X>]
a’ :gq(Qnt,X, girl’(X)) X love’(X, %)
a girl who v[spec <n[]:X>, n[]ij’
subcat <n[]:Y>]
dove’(X,Y)
loved John

(2.2.4) a girl who John loved
gq(a’X, girl’(X) A love’(j’,X))
o[J:ga(a’,X, girl’(X) A love’(§’,X))

n[J:gq(a’ X, girl’(X)) v[comp <X>]:love’(j’,X)

det[] n[spec <det[]:Qnt>] n[bind <X>] vigap <n[]:X>]

a’ :gq(Qnt,X, girl’(X)) X :love’(§°,X)
a girl who n[]:j> v[spec <n[J:Y>,
' gap <n[:X>]
love’(Y,X)
John loved

In order to see how (2.2.1.a) is disallowed, let’s take a look at the following parse
tree. '

(2.2.5) *[I wonder] which boy John met a girl who loved

*y[comp <X>, gap <n[]:Y>]:love’(X,Y)

n[bind <X>]:X v[spec <n[]:X>, gap <n[J:Y>:love’(X,Y)

who loved

If this structure is to be admitted, complementization along with specification
must be involved. However, since gap @ Mr is not nil, this is disallowed.
Likewise, embedded questions are assigned parse trees as shown in (2.2.6).

(2.2.6) Mary wondered who loved John
wonder’(m’,<X>,love’(X,j’))

v[fin]:wonder’(m’,<Y>,love’(Y,j’))

a[:m?’ v[fin,spec <n[]:X>]:wonder’(X,<Y>,love’(Y,j’))
Mary v[fin,spec <n[]:X>, v[fin, comp<Y>]:love’(Y,j’)
subcat <v[comp Q]:P>]
:wonder’(X,Q,P)
wondered n[bind <Y>]:Y v[fin, spec <n[]:Y>]
:love’(Y,j’)
who v[fin, spec <n[:Y>, n[]:j’
subcat <n[|:Z>]
:love’(Y,Z)
loved John

Here we assume the following lexical entry.
(2.2.7) wondered k= vl[fin, spec<n[]:X>, subcat<v[comp Q]:P>]:wonder’(X,Q,P)

The ungrammaticality of (2.2.1.b) can be easily understood if you look at the
following local phrase structure.

(2.2.8) *[John asked me] which boy Mary wondered who loved

*v[comp <Y>,gap <u[]:Z>]:love’(Y,Z)

n[bind <Y>]:Y v[spec <n[]:Y>, gap <n[]:Z>:love’(Y,Z)

who loved

Here again, we would like to have complementization along with specification,
but this is not permitted since gap @ Mr is not nil.

3 Concluding Remarks

Phrase structure grammar descriptions of natural languages as shown above is not
developed with giving explanation to the so-called “island constraints” as its cen-
tral objective. It is a monostratal and unification based theory of grammar, with
a particular interest in giving a reasonable account to the fact that human beings
rapidly and easily understand and produce utterances of a given natural language.
Unlike transformational grammars, a strict dichotomy of competence and perfor-
mance is not a theoretical prerequisite in constructing theories of grammar in our
framework, although we could argue whether a given phenomenon fall within the
“ realm of competence or performance, in the sense that the former is to be thought of
as a static characterization of human linguistic capacity, whereas the latter should
involve dynamic aspects of this. It is to our advantage that we have real means to
consider how these two are related to each other.

Our condition on complementization to the effect that gap @ Mr be nil is in
a sense just a notational variant of FCR 20: ([SLASH]&[WH]) in GKPS pp.153-
155. This feature cooccurrence restriction states, figuratively translated in everyday
prose, that grammatical categories that are commanded by a wh-phrase cannot
have gaps in them. This is in a sense what wh-island constraint is all about. Our
constraint on complementization is, descriptively speaking, no different from this
statement. However, we might try to predict what sort of local structures are more
likely to be excluded in a given language by introducing a measure of processing
complexity to our theory, while feature cooccurrence restrictions can in principle
state any sort of stipulations.

Thus, our fragment of English utilized four category-valued features. Let us
informally define the notion “operative in a given local phrase structure” with respect
to these four category-valued features.

(3.1) operative in a local structure
In the following local structures (a) and (b), F is operative.

a. [F V1, R]
[FV2,R] X
where length(V1) < length(V2)
b. [FVL,R] |
s
X [FV2R]

where length(V1) < length(V2)

Typically subcat is operative in complementation, spec in specification,gap in
topicalization, bind in complementization. Note that complementization concurs
syntactically with specification and topicalization. In these local structures, two
category-valued features are operative. It is natural to assume that in performance
processing of these structures is heavily loaded, thus dis llowing inheritance of non-
null values of gap between the head and the mo her. Although this point has to be
further attested through other than mere s eculations, this account is not unlikely
to hold.

We notice that the following ordering relation hold among the four category-
valued features introduced in the fragment above.

(3.2) subcat < spec < gap < bind

Here the expression “F1 < F2” states that in a local phrase structure in which
F2 is operative, 1 @ Mr is to be nil. Note that since lexical rules do not involve
phrase structures, this ordering is irrelevant in their application. If we incorporate
this ordering into our theory of grammar, phrase structure rules in our grammar will
be stated in much simpler forms. Finally, this relation seems quite natural if we take
into consideration pre-theoretic significance of these features, that is subcat must be
locally processed, or bind is semantically salient and so on. In this way, grammaitical
constraints might be in part or whole translated into processing complexity of a given
configuration.

Acknowledgments

This article is based on a Japanese document I prepared for Unbounded Dependency
Workshop Symposium on Island Constraints held at Tokyo Metropolitan Univer-
sity on May, 5, 1987. Although it was entitled “Island Constraints, from HPSG
point of view” as the grammatical theory employed in that document resembled
those unification-based theories exposed in Pollard (1984) and/or Pollard (1985)
[HPSG] rather than those instantiation-based approaches of Gazdar and Pullum
(1982) [GPSG-82] and/or Gazdar, Klein, Pullum and Sag (1985) [GKPS], the term
“phrase structure grammar” is employed here because it does not really refer to
differences among theories of GPSG. A slightly amended version of this Japanese
document is available as Harada (1988).

I would like to express my gratitude to those responsible for the Unbounded
Dependency Workshop, especially Professor Nakajima Heizo at Tokyo Metropolitan
University, among others.

The grammatical description format employed in this article is sort of a by prod-
uct of discussions with members of Japanese Phrase Structure Grammar Working
Group at ICOT, whose chairman is Gunji Takao. I would like to express my thanks
to all those involved in the project. Especially Hasida Kéiti and Sirai Hidetosi are
at least as responsible for what’s written here as I am. Some premature outbursts
of ideas adopted here can be found in Harada (1986) and Harada (1987), if you pre-
fer obscure explanations in English to accurate accounts in Japanese. For further
details and developments of our approach, see Miyosi et. al. (1986) and Shirai et.

al. (1987). Hasida and Shirai(1986) will show you what constraint unification is all
about.

References

Gazdar, G. 1981. “Unbounded dependencies and coordinate structure.” Linguistic
Inquiry, 12.

Gazdar, G. and G.K. Pullum. 1982. Generalized Phrase Structure Grammar: a
theoretical synopsis. Bloomington: Indiana University Linguistics Club.

Gazdar, G., E. Klein, G.K. Pullum, and I.A. Sag. 1985. Generalized Phrase Struc-
ture Grammar. Oxford, Basil Blackwell.

Harada, Y. 1986. “A Prolog implementation of SUHG.” Linguistic Research No. 4,
Tokyo University English Linguistics Association.

Harada, Y. 1987. “Toward grammatical descriptions of natural languages within
extended unification environments,” Linguistic Research No. 5, Tokyo Uni-
versity English Linguistics Association.

Harada, Y. 1988. “A phrase structure grammar account of island constraints (in

Japanese).” Humanitas, No. 26, Tokyo: The Waseda University Law Associ-
ation.

Hasida, K. and H. Sirai. 1986. “Constraint unification (in Japanese).” Computer
Software, 3, No. 4.

Miyosi, H., T. Gunji, H. Sirai, K. Hasida, and Y. Harada. 1986. “JPSG—a phrase

structure grammar for Japanese (in Japanese).” Computer Software, Vol. 3,
No. 4.

Pollard, C.J. 1984. Generalized Phrase Structure Grammars, Head Grammars and
Natural Language. Ph.D. dissertation, Stanford University.

Pollard, C.J. 1985. “Lectures on HPSG.” unpublished manuscript, Stanford Uni-
versity.

Sirai, H., T. Gunji, K. Hasida, and Y. Harada. 1987. “Grammatical descriptions
with local constraints (in Japanese).” paper presented at Language Processing

and Communications Research Group, Institute for Electronics, Information,
and Communication Engineers of Japan.

Received March 4, 1988

{"type":"Document","isBackSide":false,"languages":["ja-jp"],"usedOnDeviceOCR":false}

{"type":"Form","isBackSide":false,"languages":["ja-jp"],"usedOnDeviceOCR":false}

