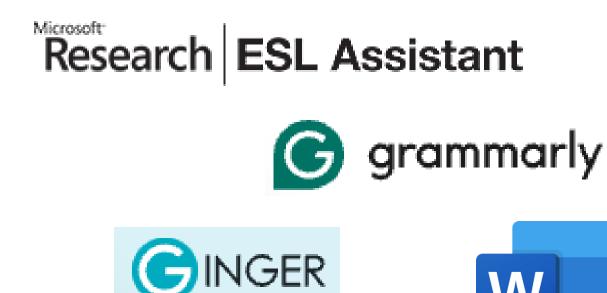
Automatic Evaluation for Grammatical Error Correction in the Era of Large Language Models

Hitotsubashi University Graduate School of Social Data Science Mamoru Komachi <mamoru.komachi@r.hit-u.ac.jp>

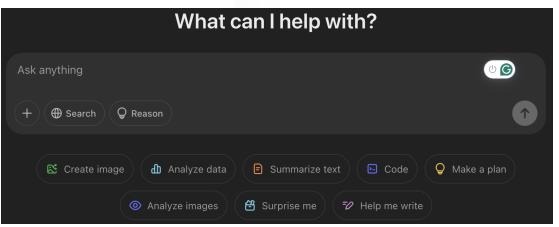
Writing in English: A challenge for non-native speakers

 Natural language processing techniques have been widely accepted



Advancements in deep learning and their impact on English writing assistance

- Large language models (LLMs) can help!
- LLMs can be used as an automatic evaluator



Two research questions for GEC evaluation

Are the existing datasets adequate in the era of deep learning?

→Revisiting meta-evaluation (evaluation of evaluations) for grammatical error correction

Can LLMs be used to evaluate grammatical error correction?

→Application of LLMs for evaluation of grammatical error correction (LLM-as-a-judge)

Revisiting Meta-evaluation for Grammatical Error Correction (Transactions of the Association for Computational Linguistics 2024)

Joint work with Masamune Kobayashi and Masato Mita

Automatic evaluation of GEC: edit-based and sentence-based metrics

• Two types of grammatical error correction (GEC) evaluation metrics based on (human) evaluation granularity

Edit-Based Metrics (EBMs)

• Evaluate only each edit

I [go → went] to Tokyo [yestaday → yesterday]. Score A Score B \downarrow

Evaluation score X (=A+B)

Sentence-Based Metrics (SBMs)

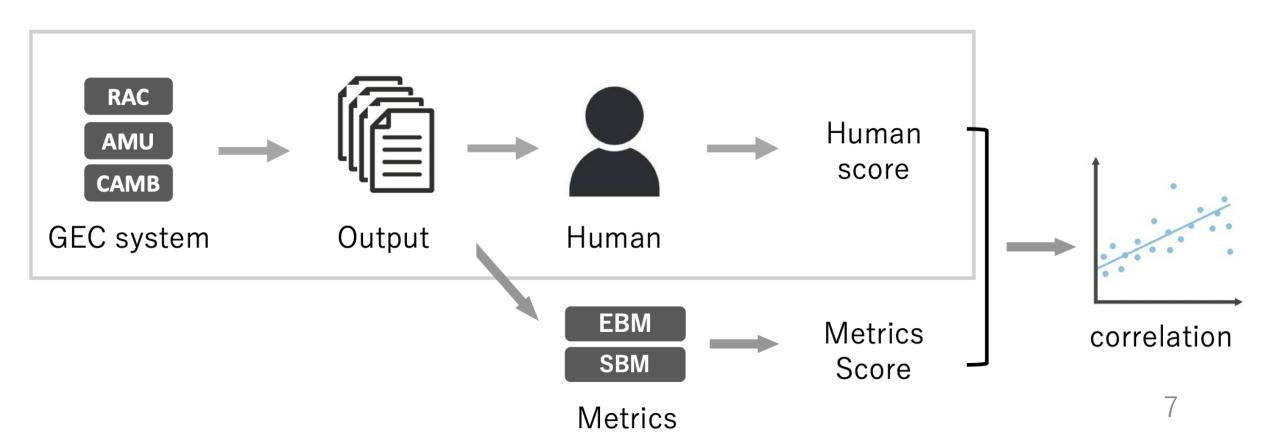
Evaluate the quality as a sentence
 <u>I went to Tokyo yesterday.</u>

↓ Evaluation score Y

Score Y

Meta-evaluation (evaluation of evaluations) of GEC using human judgment

• Grundkiewicz+ (2015) dataset (GJG15) is the most wellknown dataset for meta-evaluation of GEC



Major issues in previous evaluation methods and their meta-evaluation

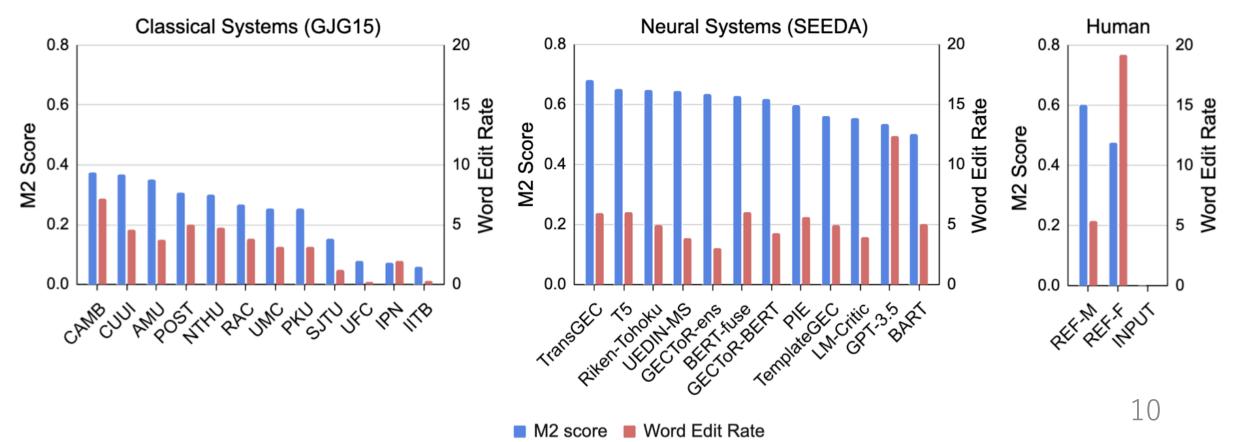
- 1. Discrepancy in evaluation granularity: Human evaluators consider a broader context, whereas automatic metrics typically rely on minimal context
- 2. Human judgment on classical systems: GJG15 conducts human evaluations on traditional systems predating the emergence of deep learning models
- Impact of outlier systems in meta-evaluation: The presence of outlier systems can influence overall conclusion, particularly when using a single configuration

Main contributions of this work

- 1. Construction of the SEEDA dataset
 - Annotations were conducted at both the edit level and the sentence level
 - Various types of neural systems were annotated
- 2. Comprehensive meta-evaluation
 - Conducted across a wide range of settings
 - Examines the potential impact of outliers and system variations

High-performance modern GEC systems were chosen as annotation targets

• Neural systems generate more edits and better corrections compared to classical systems included in the GJG15 dataset



Two types of evaluation granularity

	Step 1	Source: There is a story of a girl who lives in _ social media world every night in eight years. Output: There is a story of a girl who [lives \rightarrow alive] in [\rightarrow the] social media world
Edit-based		every night [in \rightarrow for] eight years.
evaluation	Step 2	Source: There is a story of a girl who [lives] in [_] social media world every night [in] eight
ovardation		years.
	Score	$F_{0.5} = 0.67$, Precision = 0.67, Recall = 0.67

And both are not what we want since most of us just want to live as normal people .

Surrounded by such concerns, it is very likely that we are distracted to worry about these problems.

It is a concern that will be with us during our whole life , because we will never know when the "potential bomb" will explode . - Source with context

Sentence-based evaluation

Our dataset has higher inter- and intraannotator agreement than GJG15

Statistics of our dataset (sentences)

	Unexpanded	Expanded			
1	1,777	10,893	Annotator agreement	Value	Degree
2	1,770	11,663	Inter- (Edit)	0.28	Fair
2	1 000	10 000	Inter- (Sentence)	0.41	Moderate
3	1,800	10,988	Intra- (Edit)	0.61	Substantial
Total	5,347	33,544	Intra- (Sentence)	0.71	Substantial

Expanded = unroll system outputs by aggregating pairwise evaluation

GPT and T5 can produce corrections equivalent to or better than humans

	#	Score	Range	System		#	Score	Range	System		#	Score	Range	System	
	1	0.273	1	AMU		1	0.992	1	REF-F		1	0.679	1	REF-F	
	2	0.182	2	CAMB		2	0.743	2	GPT-3.5		2	0.583	2	GPT-3.5	
	3	0.114	3-4	RAC		3	0.179	3-4	T5		3	0.173	3	TransGEC	
		0.105	3-5	CUUI			0.175	3-4	TransGEC		4	0.097	4-6	T5	
		0.080	4-5	POST		4	0.067	5-6	REF-M			0.078	4-7	REF-M	
	4	-0.001	6-7	PKU			0.023	5-7	BERT -fuse			0.067	4-7	Riken-Toho	ku
		-0.022	6-8	UMC			-0.001	6-8	Riken-Tohoku			0.064	4-7	BERT -fuse	
		-0.041	7-10	UFC			-0.034	7-8	PIE		5	-0.076	8-11	UEDIN-MS	5
		-0.055	8-11	IITB		5	-0.163	9-12	LM-Critic			-0.084	8-11	PIE	
		-0.062	8-11	INPUT			-0.168	9-12	TemplateGI	EC		-0.092	8-11	GECToR-B	ERT
		-0.074	9-11	SJTU			-0.178	9-12	GECToR-B	ERT		-0.097	8-11	LM-Critic	
	5	-0.142	12	NTHU			-0.179	9-12	UEDIN-MS	5	6	-0.154	12-12	GECToR-en	ıs
	6	-0.358	13	IPN		6	-0.234	13	GECToR-ens		7	-0.211	13-14	TemplateGE	EC
(a) Sentence-based evaluation in GJG15		7	-0.300	14	BART			-0.231	13-14	BART					
		8	-0.992	15	INPUT		8	-0.797	15	INPUT					

(b) Sentence-based evaluation in SEEDA

(c) Edit-based evaluation in SEEDA $_{\mbox{$1$}\mbox{$3$}}$

Meta-evaluation experiment

Target metrics

- Edit-based: M², SentM², PT-M², ERRANT, SentERRANT, PT-ERRANT, GoToScorer
- Sentence-based: GLEU, Scribendi Score, SOME, IMPARA

Meta-evaluation method

- System-level: correlation with human rankings
- Sentence-level: consistency with pairwise judgment

Aligning the evaluation granularity between human and system improves correlation

				System	n-level			Sentence-level							
	Metric	GJC	GJG15		SEEDA-S		DA-E	GJG15		SEEDA-S		SEEDA-E			
		r	ho	r	ho	r	ho	Acc	au	Acc	au	Acc	au		
Í	$-M^2$	0.721	0.706	0.658	0.487	0.791	0.764	0.506	0.350	0.512	0.200	0.582	0.328		
EBM –	Sent- M^2	0.852	0.762	0.802	0.692	0.887	0.846	0.506	0.350	0.512	0.200	0.582	0.328		
	$\operatorname{PT-}M^2$	0.912	0.853	0.845	0.769	0.896	0.909	0.512	0.354	0.527	0.204	0.587	0.293		
	ERRANT	0.738	0.699	0.557	0.406	0.697	0.671	0.504	0.356	0.498	0.189	0.573	0.310		
	SentERRANT	0.850	0.741	0.758	0.643	0.860	0.825	0.504	0.356	0.498	0.189	0.573	0.310		
	PT-ERRANT	0.917	0.886	0.818	0.720	0.888	0.888	0.493	0.343	0.497	0.158	0.553	0.246		
	GoToScorer	0.691	0.685	0.929	0.881	0.901	0.937	0.336	0.237	0.477	-0.046	0.521	0.042		
ſ	GLEU	0.653	0.510	0.847	0.886	0.911	0.897	0.684	0.378	0.673	0.351	0.695	0.404		
0014	Scribendi Score	0.890	0.923	0.631	0.641	0.830	0.848	0.498	0.009	0.354	-0.238	0.377	-0.196		
SBM -	SOME	0.975	0.979	0.892	0.867	0.901	0.951	0.776	0.555	0.768	0.555	0.747	0.512		
	IMPARA	0.961	0.965	0.911	0.874	0.889	0.944	0.744	0.491	0.761	0.540	0.742	0.502		

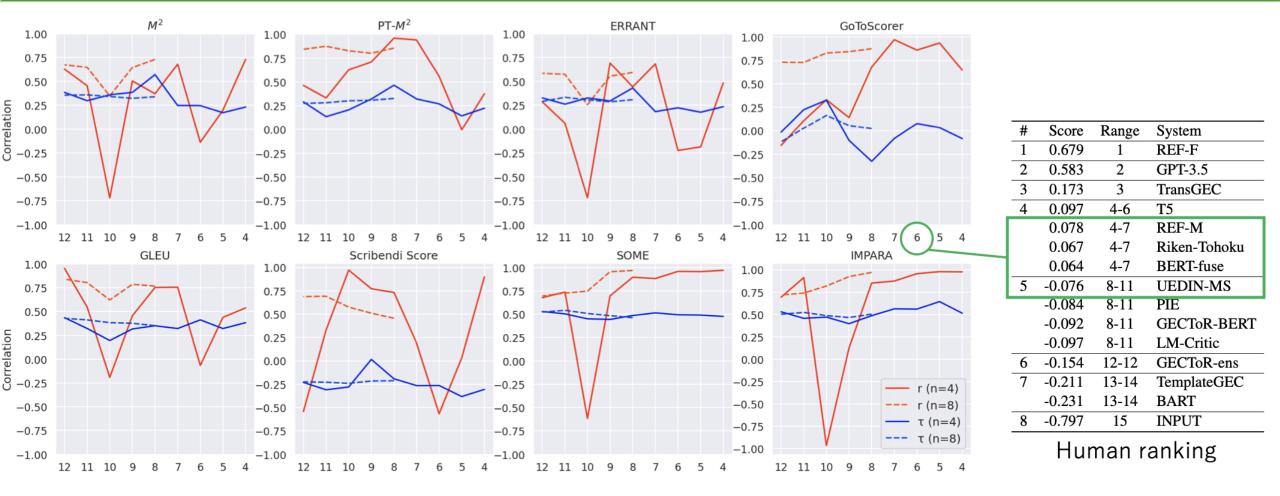
Previous metrics fail to assess high-quality corrections produced by neural systems

				System	n-level					Senten	ce-level			
	Metric	GJC	GJG15		SEEDA-S		DA-E	GJC	GJG15		SEEDA-S		SEEDA-E	
		r	ho	r	ho	r	ho	Acc	au	Acc	au	Acc	au	
	$-M^2$	0.721	0.706	0.658	0.487	0.791	0.764	0.506	0.350	0.512	0.200	0.582	0.328	
	Sent- M^2	0.852	0.762	0.802	0.692	0.887	0.846	0.506	0.350	0.512	0.200	0.582	0.328	
	$\operatorname{PT-}M^2$	0.912	0.853	0.845	0.769	0.896	0.909	0.512	0.354	0.527	0.204	0.587	0.293	
EBM -	ERRANT	0.738	0.699	0.557	0.406	0.697	0.671	0.504	0.356	0.498	0.189	0.573	0.310	
	SentERRANT	0.850	0.741	0.758	0.643	0.860	0.825	0.504	0.356	0.498	0.189	0.573	0.310	
	PT-ERRANT	0.917	0.886	0.818	0.720	0.888	0.888	0.493	0.343	0.497	0.158	0.553	0.246	
	GoToScorer	0.691	0.685	0.929	0.881	0.901	0.937	0.336	0.237	0.477	-0.046	0.521	0.042	
ſ	GLEU	0.653	0.510	0.847	0.886	0.911	0.897	0.684	0.378	0.673	0.351	0.695	0.404	
CDM	Scribendi Score	0.890	0.923	0.631	0.641	0.830	0.848	0.498	0.009	0.354	-0.238	0.377	-0.196	
SBM –	SOME	0.975	0.979	0.892	0.867	0.901	0.951	0.776	0.555	0.768	0.555	0.747	0.512	
l	IMPARA	0.961	0.965	0.911	0.874	0.889	0.944	0.744	0.491	0.761	0.540	0.742	0.502	

Outlier output greatly affects the metaevaluation results

llpaditad taxta				System	n-level					Senten	ce-level		ļ
Unedited texts	Metric	+IN'	IPUT	+REF-F, 0	GPT-3.5	All sy	ystems	+IN	NPUT	+REF-F	, GPT-3.5	All s	ystems
(+INPUT) increase		r	ρ	r	ρ	r	ρ	Acc	au	Acc	au	Acc	au
	M^2	0.928	0.814	-0.239	0.161	0.566	0.318	0.605	0.361	0.527	0.216	0.558	0.264
correlation	M^2 (+Min)	0.929	0.884	-0.172	0.264	0.587	0.403	0.673	0.461	0.594	0.304	0.630	0.363
00110101011	M^2 (+Min, Flu)	0.930	0.880	-0.149	0.262	0.594	0.400	0.674	0.458	0.595	0.305	0.631	0.364
	Sent- M^2	0.971	0.879	-0.062	0.358	0.542	0.479	0.605	0.361	0.527	0.216	0.558	0.264
	$PT-M^2$	0.974	0.929	-0.083	0.442	0.509	0.546	0.608	0.332	0.542	0.200	0.571	0.250
	ERRANT	0.925	0.742	-0.502	0.051	0.404	0.229	0.597	0.344	0.511	0.188	0.542	0.236
fluent corrections	ERRANT (+Min)	0.922	0.753	-0.462	0.112	0.475	0.279	0.609	0.350	0.530	0.184	0.550	0.218
	ERRANT (+Min, Flu)	0.920	0.725	-0.460	0.090	0.484	0.261	0.605	0.348	0.523	0.175	0.541	0.207
(+REF-F, GPT-3.5)	SentERRANT	0.965	0.863	-0.357	0.200	0.354	0.350	0.597	0.344	0.511	0.188	0.542	0.236
	PT-ERRANT	0.972	0.912	-0.324	0.240	0.352	0.382	0.580	0.292	0.500	0.144	0.532	0.199
decrease	GoToScorer	0.974	0.951	0.667	0.916	0.817	0.932	0.468	-0.064	0.505	0.009	0.476	-0.048
aarralation oon ot	GLEU	0.957	0.911	-0.039	0.475	0.453	0.574	0.698	0.400	0.611	0.227	0.639	0.285
correlation, esp. at	GLEU (+Min)	0.868	0.942	0.236	0.704	0.593	0.760	0.758	0.519	0.662	0.327	0.685	0.372
the eveter lovel	GLEU (+Min, Flu)	0.857	0.935	0.275	0.700	0.610	0.756	0.756	0.513	0.727	0.463	0.684	0.370
the system-level	Scribendi Score	0.902	0.718	0.611	0.717	0.755	0.770	0.316	-0.323	0.345	-0.264	0.315	-0.328
meta-evaluation	SOME	0.965	0.896	0.931	0.916	0.947	0.932	0.792	0.601	0.760	0.531	0.766	0.537
IIIeta-evaluation	IMPARA	0.975	0.901	0.932	0.921	0.934	0.936	0.785	0.587	0.742	0.496	0.745	0.495

Many previous metrics fail to distinguish the performance of neural systems



Solid lines: 4 systems, dashed lines: 8 systems, red: pearson, blue: spearman

Takeaway messages

- 1. Edit-based models seem to be underestimated, and aligning evaluation granularity between human judgment and system output improves correlation
- 2. Traditional GEC evaluation metrics are not good at evaluating modern neural systems
- 3. Meta-evaluation should be performed thoroughly with various kinds of settings

Large Language Models Are State-of-the-Art Evaluator for Grammatical Error Correction (Workshop on Innovative Use o NLP for Building Educational Applications 2024)

Joint work with Masamune Kobayashi and Masato Mita

Background

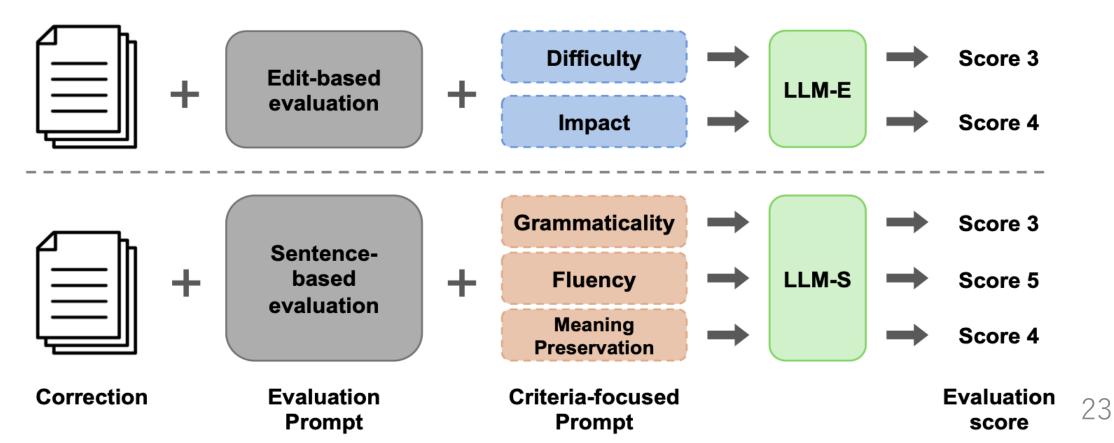
- LLMs outperform existing evaluation metrics in some tasks, such as summarization and translation
- In GEC, extensive analysis is lacking, and it is unclear how well it performs compared to existing metrics

Main findings of this work

- GPT-4 has SOTA performance compared to existing metrics
- Considering evaluation criteria in prompts leads to performance improvement (especially sentence fluency)
- As the scale of the LLMs decreased, the correlation with human evaluation decreased, and the ability to capture the fluency of corrected sentences decreased as well

Methods: LLM-as-a-judge for GEC

• LLMs evaluate the correction using prompts for each granularity focusing on evaluation criteria for GEC



Experimental setup

GEC metrics:

- Edit-based: M2, ERRANT, GoToScorer, PT-M2
- Sentence-based: GLEU, Scribendi Score, SOME, IMPARA LLMs:
- LLaMa 2 (13B), GPT-3.5, GPT-4

Dataset: SEEDA [Kobayashi+, '24]

- Human scores are assigned at each granularity to 15 sets of sentences
- "Base" meta-evaluation: 12 outputs excluding outliers
- "+ Fluent corr." meta-evaluation : "Base" + Two fluent corrections

Results: system-level analysis

- GPT-4 achieves the highest correlations, and criteria-focused prompts are effective.
- The correlation decreased as the LLM scale was reduced (especially in "+ -Fluent corr.")
- Most of the correlations for GPT-4 exceed 0.9.

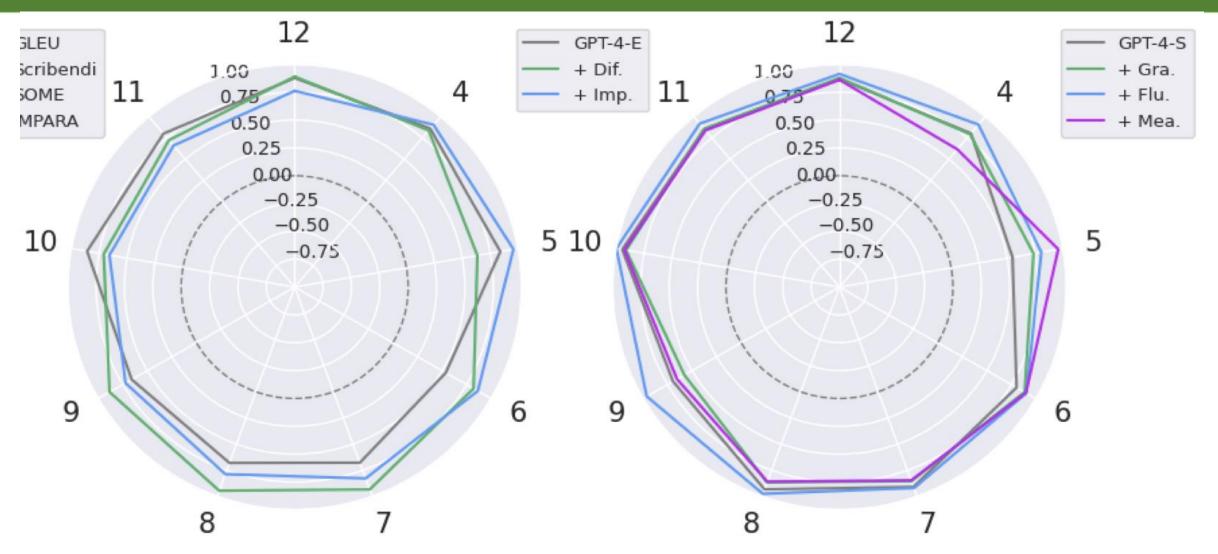
	System-level										
Matria		SEE	DA-E	-	SEEDA-S						
Metric	Ba	se	+ Flue	nt corr.	Ba	ise	+ Fluent corr.				
	r	ho	r	ho	r	ho	r	ho			
M^2	0.791	0.764	-0.239	0.161	0.658	0.487	-0.336	-0.013			
ERRANT	0.697	0.671	-0.502	0.051	0.557	0.406	-0.587	-0.116			
GoToScorer	0.901	0.937	0.667	0.916	0.929	0.881	0.627	0.881			
$\operatorname{PT-}M^2$	0.896	0.909	-0.083	0.442	0.845	0.769	-0.162	0.336			
GLEU	0.911	0.897	0.053	0.482	0.847	0.886	-0.039	0.475			
Scribendi Score	0.830	0.848	0.721	0.847	0.631	0.641	0.611	0.717			
SOME	0.901	0.951	0.943	0.969	0.892	0.867	0.931	0.916			
IMPARA	0.889	0.944	0.935	0.965	0.911	0.874	0.932	0.921			
GPT-3.5-E	-0.059	0.182	-0.844	-0.257	-0.270	-0.245	-0.900	-0.525			
GPT-4-E	0.911	0.965	0.845	0.974	0.839	0.846	0.786	0.899			
+ Difficulty	0.941	0.972	0.909	0.978	0.885	0.860	0.863	0.908			
+ Impact	0.905	0.986	0.848	0.987	0.844	0.860	0.793	0.908			
Llama 2-S	0.534	0.427	0.161	0.349	0.482	0.273	0.090	0.235			
GPT-3.5-S	0.878	0.916	0.302	0.648	0.770	0.636	0.199	0.433			
GPT-4-S	0.960	0.958	0.967	0.969	0.887	0.860	0.931	0.908			
+ Grammaticality	0.961	0.937	0.981	0.956	0.888	0.867	0.953	0.912			
+ Fluency	0.974	0.979	0.981	0.982	0.913	0.874	0.952	0.916			
+ Meaning Preservation	0.911	0.960	0.976	0.974	0.958	0.881	0.952	0.925			

Results: sentence-level analysis

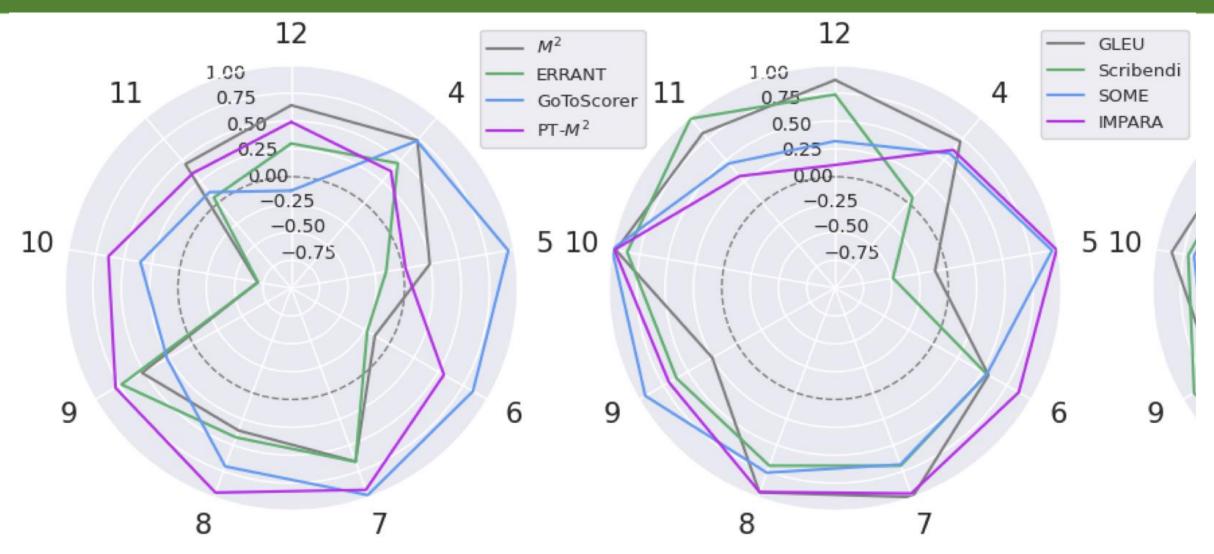
- GPT-4 performance differs from that of the system-level metaevaluation
- "GPT-4-S + Fluency" surpassed existing metrics and achieved SOTA performance.

	Sentence-level											
Matria		SEE	DA-E			SEEDA-S						
Metric	Ba	ase	+ Flue	ent corr.	B	ase	+ Fluent corr.					
	Acc	au	Acc	au	Acc	au	Acc	au				
M^2	0.582	0.328	0.527	0.216	0.512	0.200	0.496	0.170				
ERRANT	0.573	0.310	0.511	0.188	0.498	0.189	0.471	0.129				
GoToScorer	0.521	0.042	0.505	0.009	0.477	-0.046	0.504	0.009				
$\operatorname{PT-}M^2$	0.587	0.293	0.542	0.200	0.527	0.204	0.528	0.180				
GLEU	0.695	0.404	0.630	0.266	0.673	0.351	0.611	0.227				
Scribendi Score	0.377	-0.196	0.359	-0.240	0.354	-0.238	0.345	-0.264				
SOME	0.747	0.512	0.743	0.494	0.768	0.555	0.760	0.531				
IMPARA	0.742	0.502	0.725	0.455	0.761	0.540	0.742	0.496				
GPT-3.5-E	0.463	-0.073	0.428	-0.143	0.487	-0.026	0.437	-0.126				
GPT-4-E	0.728	0.455	0.702	0.404	0.698	0.395	0.687	0.374				
+ Difficulty	0.719	0.437	0.708	0.417	0.717	0.434	0.703	0.406				
+ Impact	0.730	0.460	0.710	0.420	0.717	0.434	0.696	0.392				
Llama 2-S	0.521	0.042	0.527	0.054	0.534	0.068	0.526	0.052				
GPT-3.5-S	0.633	0.265	0.597	0.195	0.631	0.263	0.608	0.216				
GPT-4-S	0.798	0.595	0.783	0.565	0.784	0.567	0.770	0.540				
+ Grammaticality	0.807	0.615	0.804	0.607	0.796	0.592	0.788	0.577				
+ Fluency	0.831	0.662	0.812	0.624	0.819	0.637	0.797	0.594				
+ Meaning Preservation	0.813	0.626	0.793	0.587	0.810	0.620	0.792	0.584				

System-level window analysis of higherranking systems: GPT-4-S works best



System-level window: conventional metrics are not robust for neural GEC models



Two research questions for GEC evaluation

Are the existing datasets adequate in the era of deep learning?

→Revisiting meta-evaluation (evaluation of evaluations) for grammatical error correction

Can LLMs be used to evaluate grammatical error correction?

→Application of LLMs for evaluation of grammatical error correction (LLM-as-a-judge)

- Masamune Kobayashi, Masato Mita, Mamoru Komachi.
 Revisiting Meta-evaluation for Grammatical Error Correction. (TACL 2024) <u>PDF</u>
- Masamune Kobayashi, Masato Mita, Mamoru Komachi.
 Large Language Models are State-of-the-Art Evaluator for Grammatical Error Correction. (BEA 2024) PDF